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ABSTRACT 

Theories of t h e  o r ig in  of t he  storm-time rad ia t ion  b e l t  

( the r ing  current)  and associated bays and auroras have invoked 

hydromagnetic flow - from t h e  magnetotail on t h e  one hand and flow 

i n t o  the  t a i l  on the  other. It i s  shown t h a t  both flow pa t te rns  

occur, the  inward flow being the source of energy and driving the  

major magnetospheric convection pattern.  

of lower energy (E 

o r  storm-time rad ia t ion  zone and higher energy (E 

pa r t i c l e s ,  and of t he  permanent radiat ion b e l t  i t s e l f .  

- 

Inward flow i s  the  source 

10 keV) auroral pa r t i c l e s ,  of t he  asymmetric 

20 keV) trapped 

When t h e  asymmetric b e l t  develops su f f i c i en t  energy densi ty  

(g 
changes the  plasma convection pat tern and ionospheric current system. 

The following phenomena are explained: 

erg cmm3) an e l e c t r i c  space-charge f i e l d  develops which 

(a) The t a i l  plasma sheet i s  formed by the  outward H a l l  

d r i f t  of plasma from the  storm-time rad ia t ion  zone. 

(b) On a smaller scale, 'bubbles" of plasma from the  

rad ia t ion  zone a re  re leased i n t o  the tail, accounting f o r  t he  observed 

f 'islands" of t a i l  electrons,  

the  ionosphere, and energetic protons (7 300 keV) which have been 

seen i n  the  tail.  

f f  spikes" of e lectrons seen just above 
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(c )  The storm o r  bay ionospheric current system (DP1) 

develops from the  q u i e t - t h e  system (DP2) as a r e s u l t  of t he  

magnetospheric space-charge f i e l d  and changed ionospheric conductivity 

caused by auroral  precipi ta t ion.  

' (d) Quiet auroral  arcs  and auroral  substorms a re  due t o  

electron prec ip i ta t ion  from regions of low magnetic f i e l d  strength,  

where t h e  f irst  invariant  (of trapped p a r t i c l e s )  i s  l o s t .  

The intermit tent  ejection of plasma from t h e  radiat ion b e l t  

suggests t h a t  the  model be termed the  'burping rad ia t ion  bel t" .  
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1. INTRODUCTION 

Theory has long predicted the  development of a b e l t  of 

trapped energetic pa r t i c l e s  t o  explain the  main phase of a geo- 

magnetic storm, and observational evidence now confirms i t s  

existence [Cahill,  1966, 1967; Frank, 19671. The b e l t  develops 

asymmetrically, growing f i rs t  i n  the night and evening sectors  

where it i s  associated w i t h  powerful ionospheric current systems 

and auroral  ac t iv i ty .  

phenomenon. 

These a re  c lear ly  p a r t  of one very complex 

A phenomenon not generally iden t i f i ed  with t h e  r ing  

current or storm-time radiat ion b e l t  i s  t h e  permanent b e l t  of 

Van Allen radiat ion.  

but  the  evidence i s  becoming stronger t h a t  the  storm-time b e l t  

represents a rather convulsive development stage of t he  permanent 

b e l t .  

t o  the  understanding of t h e  main magnetospheric processes as w e l l  

as t o  some auroral  and magnetic phenomena. 

The or igin o f  t h i s  radiat ion i s  not understood, 

Thus the or ig in  of the storm-time rad ia t ion  b e l t  i s  basic  

The introduction of hot plasma and Van Allen p a r t i c l e s  i n t o  

t h e  magnetosphere following magnetic reconnection i n  a magnetotail 

has been discussed by Piddington [1960, 1965, 1967a1, Axford e t  al. 

[ 19651, Atkinson [ 19661 and Dungey [ 19671. The theory i s  successful 

i n  accounting f o r  e n e r a  requirements and i n  explaining some magnetic 
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and auroral effects.  However, there i s  disagreement about the  form 

of t h e  equivalent ionospheric current system and i t s  changes during 

a storm, and different  workers have attempted t o  explain d i f fe ren t  

features of these current systems as independent phenomena. There 

has a l so  been confusion i n  the  use of auroral  data which now reveal 

a complex family of phenomena having different ,  although r e l a t ed  

or igins  

The basic  feature  of the t a i l  reconnection model i s  flow 

of plasma with frozen i n  f i e l d  from t h e  t a i l  t o  the  corotating 

magnetosphere. Recently, observational evidence discussed below has 

cas t  some doubt on t h i s  feature  by revealing frequent outward 

motions in to  the  tail. 

It i s  the  purpose of th i s  paper t o  attempt t o  reconcile 

these apparent discrepancies and t o  show tha t  a s ingle  model m a y  

explain: 

(a) Two bas ica l ly  different equivalent ionospheric current 

systems, 

(b) various auroral  precipi ta t ion phenomena, 

(c )  the  radiat ion bel ts ,  asymmetrical and symmetrical, 

and 

(d) the  eject ion of plasma in to  t h e  t a i l  t o  form the 

t a i l  plasma sheet, electron " i s l ands"  and "spikes". Following the  

common proceedure of using a catch phrase t o  ident i fy  a model, we 

c a l l  it the "burping radiation belt". 
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b 

6 

2. THE EVIDENCE OF PLASMA FLOW FROM THE TAIL 

Observational evidence suggests t ha t  t he  storm-time 

radiat ion b e l t  develops asymmetrically, with maximum in t ens i ty  i n  

the  evening sector.  

depends on a var ie ty  of data  and these require  a b r i e f  review before 

we attempt t o  extend the  model t o  account a l so  f o r  plasma flow in to  

the  tail. 

The theory of i t s  or ig in  from ta i l  plasma 

- 

2.1 Equivalent Ionospheric Current Systems 

Sea-level magnetic perturbations m a y  be converted t o  

equivalent current systems, which are systems which would explain 

the  perturbations,  but are  not unique i n  t h a t  respect.  The decrease 

i n  horizontal  i n t ens i ty  at low la t i tudes  i s  not uniform i n  longitude 

and has been in te rpre ted  as indicating the  development of a storm- 

time b e l t  strongest i n  the  evening sector  [Akasofu, 19671. Such a 

development, which i s  a l s o  indicated by t h e  p a r t i c l e  data, i s  

consis tent  with flow inward from the ta i l .  

It i s  the  high l a t i t u d e  equivalent ionospheric current 

systems which indicate  l ike ly  f low pat terns .  

forms as well as in t ens i ty  but may be divided i n t o  two types [See 

Obayashi, 19663. 

i s  observed b r i e f l y  during substorms and i s ,  we believe,  a temporary 

departure from the  general flow pattern.  

These have a va r i e ty  of 

The magnetic bay or substorm system (or DP1 system) 

It r e s u l t s  from a changed 
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system of e l e c t r i c  f ie lds ,  but also t o  a la rge  extent from changed 

ionospheric conductivity caused by auroral  precipi ta t ion.  

in te rpre ta t ion  i s  therefore d i f f i cu l t  and i s  delayed t o  a l a t e r  

section, where it i s  t r ea t ed  as a system which evolves from the  

normal current system. 

I t s  

The normal current system, which i s  found during periods 

of average a c t i v i t y  and a l so  a t  times during the  ear ly  p a r t s  of 

storms, i s  shown i n  Fig. la. This DP2 pa t te rn  has been derived 

with s m a l l  var ia t ions by Nagata and Kokubun [ 19621, Nishida [ 19671 

and others. Although l e s s  spectaculas than DP1 e l ec t ro j e t s ,  it i s  

the  system which flows most of the time and so indicates  t h e  usual 

magnetospheric ac t iv i ty .  

A most, important point t o  note i n  using these data i s  tha t  

they a re  equivalent current systems. They must be driven by 

magnetospheric e l e c t r i c  f i e l d s  and so currents must flow down the  

f i e l d  l i n e s  as well as i n  the  ionosphere. 

[Piddington, 19621 tha t  the  sea-level magnetic f i e l d  caused by t h e  

downflowing currents cancels out the e f f ec t s  of ionospheric Pedersen 

current,  so t h a t  t he  equivalent current system i s  subs tan t ia l ly  

H a l l  current. 

motions of the  magnetic f i e l d  l i nes  i n  t h e i r  magnetospheric interchange 

motions. 

current arrows t o  give the d r i f t  arrows V i n  Fig. la. It w i l l  be 

It has been shown 

The l a t t e r  i s  carried by electrons which follow t h e  

Hence these motions a re  given by simply reversing the  

q 



seen tha t  t h i s  drift car r ies  the  ends of t h e  f i e l d  l i n e s  in to  t h e  

auroral  oval (dashed) which defines t h e  cross sect ion of t he  

magnetotail. The polar p lo t  of Fig. l a  m a y  be projected in to  an 

equator ia l  section t o  give drift  V shown i n  Fig. l b ;  here dr i f t  

through the  t a i l  i s  not shown. 

these drifts or magnetospheric convection i s  supplied by f r i c t i o n a l  

in te rac t ion  with the  solar wind [Piddington, 1962, 19641. 

9 

The power required t o  maintain 

This simple interpretat ion of the  equivalent ionospheric 

current system DP2 introduces a flow pa t te rn  of plasma and frozen i n  

f i e l d  l i n e s  t o  and from the  t a i l  and leads t o  the  inward flow model 

[ Piddington, 1967aI. 

current systems t r e a t  them as r e a l  current systems. This overlooks 

the  f a c t  t h a t  the  r e a l  system i s  p a r t  of a hydromagnetic disturbance 

or iginat ing above the  magnetosphere and propagating downwards. Such 

a disturbance cannot propagate f reely i n  t h e  non-conducting atmosphere. 

In  f ac t ,  apart  from ionospheric Hall current,  most high l a t i t u d e  

disturbances would cause l i t t l e  or no sea-level disturbance. 

Most other interpretat ions of the  equivalent 

2.2 

Aurorae a re  such a complex family of phenomena t h a t  t h e i r  

They use i n  developing a theory of the  magnetosphere i s  d i f f i c u l t .  

may, however, be divided i n t o  several d i f fe ren t  types according t o  

zones of occurrence and other properties [Piddington, 19653. Only 

Zone I1 or discre te  visual  auroras are required fo r  t h e  present 
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discussion and these define Feldstein 's  "auroral oval" which i s  

iden t i f i ed  with the  boundasy of the magnetotail as it crosses the  

ionosphere. 

and t h e  ident i f ica t ion  i s  confirmed by a number of phenomena: the  

boundary of trapped fast par t ic les ,  some hydromagnetic waves, " ta i l  

spikes" and magnetic conjugate experiments [ Piddington, 1967a,bl 

This boundary i s  shown i n  Fig. 2 f o r  average conditions, 

Also shown i n  Fig. 2 i s  the auroral  oval and presumed ta i l  

section during a great magnetic storm. If  t h i s  in te rpre ta t ion  

i s  correct then the  magnetic f lux  i n  t h e  t a i l  doubles from i t s  

average value of - 7 x 10 

s tored within a distance of 100 earth radii (RE) exceeds 

This energy provides a s tore  which i s  adequate t o  supply the  storm- 

t i m e  r ing  current, auroral  and ionospheric dissipation. 

t he  energy i s  t o  be used i n  t h i s  way, then the  mechanisms involved 

are  automatically defined. 

16 gauss an2 and t h e  magnetic energy 

erg. 

However, if 

The magnetotail energy i s  t h e  only apparent source capable 

of providing the  requirements of  the storm-time radiat ion be l t .  It 

may be u t i l i z e d  only by the  reconnection of magnetic f i e l d  l i n e s  

from the  northern and southern hemispheres across the  neutral  sheet, 

and t h e i r  subsequent withdrawal from the  tail.  Such a flow of f i e l d  

l i n e s  and plasma from the  t a i l  i s  a l so  consistent with the  form of 

d r i f t  pa t te rn  V shown i n  Fig. 1. This flow pa t te rn  i s  thought t o  

continue during storms 
9 

as well as during periods of quiet .  During 
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substorms and during i so la ted  bays the  model provides a second 

system of drifts and currents which, when combined with DP2 and 

changes i n  ionospheric conductivity, give the  substorm or bay or 

DP1 system. 

An important feature  of the theory i s  the  massive precipi-  

t a t i o n  of electrons t o  provide visual  auroras and t o  increase 

ionizat ion i n  t h e  region 90-120 km i n  which most of t he  Cowling 

conductivity i s  developed. For the present discussion, however, we 

a re  more concerned with p a r t i c l e s  which remain trapped. I n  t he  

t a i l  plasma sheet there i s  a good supply of p a r t i c l e s  of energy 

< 1 keV, and i n  the  neut ra l  sheet these ase trapped i n  a f i e l d  

of strength about 1 y [Speiser and Ness, 19671. 

_ _  nnn+i-n - . . - - m F  m m - 0  f i e l d  l i n e s ,  these Dasticles are  moved in to  t h e  

corotating magnetosphere t o  say 5RE and t o  a region where the  f i e l d  

s t rength exceeds 100 y so t h a t  the p a r t i c l e s  a t t a i n  energies of 

2 100 keV, with some at higher energies [Sakurai, 19661. These 

p a r t i c l e s  provide the  asymmetrical radiat ion zone and other phenomena. 

They account fo r  the  observations of Konradi [19671 of protons of 

energy > 100 keV i n  the d w  sector and h i s  in te rpre ta t ion  of in jec t ion  

i n  the  night sector and westward drift .  

Following recon- 

The asymmetrical radiation has been drawn i n  magnetospheric 

equator ia l  section [Piddington, 1967a, Fig. 31 and i s  shown i n  

ionospheric projection (projection being along the  f i e l d  l i n e s )  i n  



11 

Fig. 3 below. The auroral  oval i s  shown and the  DP2 drift  pa t te rn  

of Fig. l a )  i s  now modified t o  tha t  shown by the  arrows V (vs P' 
This i s  a r e s u l t  of the  addition of a new plasma d r i f t  V 

by an e l e c t r i c  space-charge f i e l d .  

magnetosphere protons dr i f t  westward at a r a t e  proportional t o  t h e i r  

caused 
S' 

On entering the  corotating 

energy, about 1 radian per hour for 15 keV ions. This places the  

asymmetric proton b e l t  i n  the dusk hemisphere as shown. Trapped 

electrons,  which appear t o  have a lower energy density, will d r i f t  

eastward but at a lower r a t e  than the protons. 

a r e  sketched at r igh t  angles t o  the gradient of e l e c t r i c  po ten t i a l  

The d r i f t  l i n e s  V 

caused by these accumulations o f  space charge. 

3. THE RELEASE OF PARTICLES INTO THE TAIL 

The magnetotail has an overal l  extent perpendicular t o  

the  neutral  sheet of about 40 RE, but t he  neutral  sheet i t s e l f  has 

a thickness of only 0.1 - 1 R [Speiser and Ness, 19661. This t h i n  

sheet l i e s  within a broad region of magnetic f i e l d  depression and 

plasma enhancement ca l led  the  tai l  plasma sheet, and t h e  two sheets 

a r e  shown schematically i n  Fig. 4. 

varying from 4 

- 30 times t h a t  of t he  neutral  sheet. 

E 

The plasma sheet has thickness 

t o  about 12 RE [Bame e t  al., 19671, averaging 

3.1 Observational Data 

Hones e t  al. [19671 have studied the  t a i l  plasma sheet 

at geocentric distances - 17 and found t h a t  both the  lower energy 
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(300 eV - 20 keV) and higher energy (> 45 keV) electrons disappear 

and reappear i n  a charac te r i s t ic  sequence shown i n  Fig. 5a by t h e  

p l o t  I?. 

p lo t  of t he  X component from a s ta t ion  near t h e  same magnetic longitude. 

A t  t h e  start of t h e  bw a gradual decrease i n  P shows tha t  t he  plasma 

sheet disappears from the  v i c in i ty  of t he  s a t e l l i t e  within a period 

1/2 - 1 hour. 

abruptly at full in tens i ty .  

of t h e  t a i l  plasma sheet, Hones e t  al. repor t  many temporary appearances. 

These a re  usually abrupt and occur during a negative bay; t he  subsequent 

decay i s  much slower. 

Also shown i s  a geomagnetic negative bay i n  t h e  form of a 

A t  the  time of bay minimum the  plasma sheet reappears 

In  addition t o  temporary disappearances 

It does not seem possible t o  account fo r  the  sudden appearances 

of t a i l  plasma, e i the r  temporary or permanent, i n  terms of diffusion 

from the  neutral  sheet. Nor i s  it possible  t o  explain Fig. 5a i n  

terms of a c t i v i t y  i n  the  d is tan t  tail and subsequent flow of plasma 

towards the  earth;  t h i s  would give an increase which would e i the r  be 

sustained o r  followed by a decrease. 

it seems tha t  at the  onset of a bay plasma moves from the v i c i n i t y  of 

t he  s a t e l l i t e  ( a t  - 17 R ) towards the  earth, and l a t e r  returns.  

Extending these considerations, one must conclude tha t  i t  i s  most 

unl ikely that the tail plasma sheet could be formed as a d i rec t  r e s u l t  

of any processes within t h e  t a i l .  

as does 

than the  pa r t i c l e s  causing discrete auroras. 

A s  suggested by Hones e t  al., 

E 

I t s  grea t  extent makes t h i s  unlikely,  

the qua l i ty  of i t s  plasma which i s  generally much "hotter" 



It would seem tha t  t he  "plasma appearances" of Hones e t  al. 

must be ident i f ied  with the "islands" of energetic electrons and 

depressed magnetic i n t ens i ty  seen in  the t a i l  [Anderson and Ness 

1966 and others] and with the  "spikes" of electrons seen a t  lower 

l eve l s  by F r i t z  and Gurnett [19653 and McDiarmid and Burrows [19651 

and shown i n  Fig. 2. 

sheet ( the auroral  oval) and so could hardly or ig ina te  within t h e  

tai l .  

These phenomena occur far from the  tail neut ra l  

Final ly  we have evidence from several  quarters of outward 

t r ave l l i ng  e f f ec t s  i n  t h e  tail.  

a re  seen t o  follow negative bays [Heppner e t  al. , 19671. 

and Krimigis [ 19671 have observed bursts  of protons of energy 

> 300 keV which cor re la te  with negative bays and appear t o  stream 

a w a y  from the  earth. 

forming t h e  "islands" move similarly. 

Magnetic disturbances i n  t h e  t a i l  

Armstrong 

Rothwell [1967] has shown t h a t  t he  electrons 

We must conclude tha t ,  even though the  most important 

movement of f i e l d  l i n e s  and plasma i s  inwards from the  t a i l ,  during 

t h e  r e l a t i v e  br ie f  periods of negative bays plasma i s  somehow released 

again in to  the  t a i l .  

i n s t a b i l i t y  on t h e  outer boundary of t h e  r ing  current;  t h i s  involves 

the  development of an e l e c t r i c  f i e l d  of t he  type shown i n  Fig. 3. 

Taylor and Hones [1965] have proposed a magnetospheric convection 

model which provides outward d r i f t s ,  but it i s  not c lear  how t h i s  

Swift [1964, 1967 a,b] has suggested a f lu te  
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model i s  driven or  from where the  necessary power i s  derived. 

3.2 Pa r t i c l e  Dr i f t s  i n  the  Radiation B e l t  

I n  the closed magnetosphere two p a r t i c l e  d r i f t  motions a re  

superimposed on the general convection pa t te rn  of Fig. 16. 

t h e  drifts of energetic electrons and protons caused by the  gradient 

of t he  magnetic f i e l d  E, and t h e  Hall dr i f t  of all pa r t i c l e s  caused 

by any additional space-charge f i e l d  - E. 

These a re  

These drifts are given by 

where p and e a re  t h e  magnetic moment and charge (emu) of t h e  pa r t i c l e .  

There i s  a l so  a d r i f t  due t o  motions of pa r t i c l e s  along f i e l d  l i n e s  

but i n  the  present order-of-magnitude model t h i s  i s  neglected. 

Energetic p a r t i c l e s  i n  a rad ia t ion  zone w i l l  d r i f t  so as 

t o  create  a westward e l e c t r i c  current and i n  a symmetric zone t h i s  

i s  a s tab le  r ing  current.  In  the asymmetric pa r t  of t he  zone shown 

i n  Fig. 3 protons drift  w e s t w a r d  and electrons eastward t o  c rea te  

e l e c t r i c  space chazge as shown, and t h i s  i n  turn drives ionospheric 

currents  i n  the  manner discussed by Fejer [1961] and others. 

space charge has other e f f ec t s  and so we make an order of magnitude 

estimate of t he  e l e c t r i c  f i e l d .  

The 

Two geometric fac tors  are required t o  define t h e  asymmetric 

zone of Fig. 3: i t s  thickness ,t i n  t h e  direct ion perpendiculaz t o  a 
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t h e  equator ia l  plane and i t s  boundary thickness A b  which r e l a t e s  

the  f i e l d  gradient t o  the  average f i e l d  Bo by the  equation Bo = A,vB. 

We a lso  note t h a t  i n  moving along the f i e l d  l i n e s  a magnetic f i e l d  B 

i n  t h e  magnetosphere transforms t o  a f i e l d  ss0 i n  t he  ionosphere 

and an e l e c t r i c  f i e l d  by a fac tor  s. 

ionosphere (along a p a r a l l e l  of l a t i t ude )  has an ef fec t ive  o r  Cowling 

conductivity C integrated ve r t i ca l ly  through the  ionosphere. This 

s t r ip  projects  i n to  an equatorial  width of  s cm and the  c i r c u i t  o r  

( r ing  current)  cross-sectional m e a  i s  s la. 

0 

A s t r i p  1 cm wide i n  the  

3 

Let d r i f t  motions create  a n  e l e c t r i c  f i e l d  E i n  the  m 
magnetosphere, then t h i s  w i l l  project  t o  a f i e l d  sEm and drive an 

ionospheric current 

J = C s E m  3 

In  the  magnetosphere the  space charge N.e i s  casr ied by ions of 
1 

density Ni with d r i f t  veloci ty  pm/ t o  c m r y  t h e  same current, 
eBO 

now given by 

where W. i s  the  ion energy density due t o  transverse motion, so tha t  
1 

W. = IJ~ B N . 
1 o i  Replacing v B by Bo/A and eliminating J we have 
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- 'i 'a 
Em - 

' 3  Bo 'b 
(4) 

During a magnetic storm, Frank [ 19671 has observed a proton energy 

density - lov7 erg A l a rge  par t  of t h i s  i s  probably represented 

by the  syrmnetrical be l t ,  but we will assume t h a t  10 per cent i s  

asymmetrical. gauss, corresponding t o  an L 

value f o r  a dipole f i e l d  of about 6 (or a smaller value for an 

We put Bo = 1.5  x 

i n f l a t e d  magnetosphere). The value of C fo r  t h e  night ionosphere 

i n  t h e  absence of auroral  pa r t i c l e s  i s  about 2 x emu [Johnson, 
3 

3 19651 and if we put 1, - a b ,  then we f ind  E - 3 x 10 

corresponding d r i f t  veloci ty  found by subs t i tu t ing  Em f o r  E i n  

equation (1) i s  - 20 la sec 

emu. The m 

-1 o r  11 RE per hour. 

The charac te r i s t ic  time for  a bay o r  substorm i s  1 - 3 

hours and with the  above dr i f t  velocity a major red is t r ibu t ion  of 

magnetospheric plasma must occur. This i s  discussed i n  t h e  following 

section. Other e f fec ts  which result from t h e  polar izat ion f i e l d  a re  

ionospheric currents, t he  development of a full r ing  current and of 

t h e  Zone I auroras and f i n a l l y  the  development of t h e  auroral  

subs torm. 

3.3 The Origin of t he  T a i l  Plasma Sheet and Is lands 

The e l e c t r i c  space-charge f i e l d  E i s  directed eastward m 

and the  plasma d r i f t  caused by th i s  f i e l d  i s  outwards i n  t h e  meridian 
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planes. This i s  shown by t h e  arrows V i n  Figs. l b  and 3 and t h e  

arrows F i n  Fig. 4. 

i n  the  midnight sector,  d i r ec t ly  opposes the  general flow pa t te rn  

denoted by V 

S 

I n  these figures t h e  flow Vs modifies and, 
2 

(Figs. la, l b )  and by F1 i n  Fig. 4. The l a t t e r  may be 
9 

i den t i f i ed  with auroral  motions and Hall current ( the reverse of t he  

electron H a l l  d r i f t )  i n  the  p o l a r  cap; a reasonable value f o r  

disturbed conditions i s  2 0.5 km sec -1 [Cole, 19631. This drift,  

when projected in to  t h e  magnetosphere and increased by the fac tor  

s - 17, has a value 2 9 km sec-1, o r  l e s s  than half  t he  dr i f t  due t o  

We concluded that  when the asymmetric portion of t he  

-a storm-time radiat ion b e l t  a t t a i n s  an energy density of  about 10 

cm 3, the  d r i f t  of plasma inwards from the  t a i l  i s  reversed. 

flow F 

t h i s  replenishment i s  with pa r t i c l e s  of energy typ ica l ly  7 20 keV. 

P w t i c l e s  arr iving from the  t a i l  and providing d iscre te  (Zone 11) 

auroras a re  typ ica l ly  2 10 keV. 

erg 
- 

The 

of Fig. 4 replenishes the  t a i l  plasma sheet and, f'urthermore, 2 

It i s  only a f t e r  they have been 

car r ied  in to  the  storm-time radiation zone and subjected t o  betatron 

acceleration tha t  they a t t a i n  the  higher energy typ ica l  of Zone I 

[See Piddington 1967a,bl. 

In  discussing convective motions i n  a closed magnetosphere 

where E= 0 everywhere, we m a y  assume motion of frozen i n  f i e l d  a t  
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l i n e s  and t h e  development o f  a space-charge f i e l d  E t o  balance t h e  

f i e l d  V x B seen by the moving plasma. 

t o  distinguish between these si tuations.  

magnetotail f l ux ,  however, we must assume flow of l i n e s  from the 

t a i l  and i n  general t h i s  flow (V ) i s  accompanied by plasma. 

t h e  demonstrated development of the space-charge f i e l d  E a new 

s i tua t ion  a r i ses :  t he  f i e l d  and plasma a re  decoupled and f i e l d  

l i n e s  mw continue t o  move inwards while plasma moves outwards. 

In  t h i s  w a y  t he  t a i l  plasma sheet i s  created without involving 

the  creat ion of more t a i l  f lux  near t h e  midnight sector .  

- 
There seems t o  be no ww - -  

With a diminishing 

With 
9 

m 

In  Fig. 3 we have sketched an  asymmetrical radiat ion 

b e l t  occupying a quadrant. 

random then we m i g h t  expect t o  f ind wider b e l t s  and narrower be l t s .  

A b e l t  extending only a few degrees i n  longitude w i l l  become 

polarized and will drive a very localized ionospheric current 

system. 

the  t a i l  and t h i s  i s  proposed as the mechanism causing t h e  t a i l  

"islands If of energetic electrons and depressed magnetic f i e l d  

[Anderson and Ness, 19661. 

"spikes" seen by F r i t z  and Gurnett [1965] and McDiarmid and Burrows 

[1965] and the  t rans i tory  appearances of t a i l  plasma p a r t i c l e s  

E > 45 keV seen by Hones e t  al. [19673. 

If reconnection i n  the  t a i l  occurs at 

It w i l l  a l so  cause a localized eject ion of mater ia l  i n to  

It would a l so  account for  t h e  electron 
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The escape of pa r t i c l e s  of energy - 300 keV i s  not so 

simply explained, because t h e i r  d r i f t  i s  determined almost en t i r e ly  

by magnetic f i e l d  gradients. However, these w i l l  be la rge  and 

loca l ized  i n  the  regions of t a i l  islands and spikes. I f  t h e  e n e r a  

density of the  plasma i n  t h e  radiation b e l t  i s  -3 erg cm 

[Frank, 19671, then the  magnetic f i e l d  strength reauired t o  give 

an equal energy density i s  1.6 x which i s  approximately the  

value of the undistrubed f i e l d  i n  the region concerned (L - 6). 

The plasma i s  thus capable of creating a near magnetic vacuum and any 

ex t r a  plasma i n  a local ized region (asymmetrical zone) will experience 

a l a rge  e l e c t r i c  f i e l d  (Em i n  equation 4) and a la rge  outward dr i f t  

E 
m/B . This i s  essent ia l ly  the  f l u t e  i n s t a b i l i t y  which Chang e t  al. 

0 

rla6sl - .  hnlre s i i ~ . a ~ s t . e r l  as a -0ossibil i tv i n  a region of low enough 

ionospheric conductivity C With a very low value of Bo t he  

plasma 'bubble" will d r i f t  rapidly i n t o  the  t a i l  and m a y  carry 

energetic pa r t i c l e s  such as those seen by Armstrong and Krimigis 

[ 19671. 

t o  reach the  t a i l  without being decelerated; the reason i s  t h a t  the  

magnetic moment i s  not conserved. 

3' 

This bubble model a lso a l lows  electrons of energy E 20 keV 

It i s  of i n t e re s t  t o  estimate the length of the  plasma 

t a i l ,  as d i s t i nc t  from the magnetic t a i l  which extends f o r  some 

hundreds of RE. The estimate i s  based on t h e  assumption t h a t  all 

magnetic f i e l d  l i n e s  i n  the  plasma sheet a re  connected across the  

neut ra l  sheet and have begun t o  contract back towards the  earth.  
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Other f i e l d  l i n e s  a re  being drawn into the  t a i l  and 40 keV electrons 

released in to  these l i n e s  would be l o s t .  Consider a s lab of t a i l  

plasma i n  the  midnight meridian (x z plane of Fig. 4) of thickness 

1 cm. If the  t a i l  f i e l d  strength i s  1 5  y and the  plasma sheet has 

a semi-thickness of  2 R then the f lux  i n t o  one half  of t h i s  

s lab i s  - 2 x 10 gauss cm . 
sheet i s  l e s s  than 1 y [Speiser and Ness, 19661 so t h a t  the  length 

of t he  plasma sheet i s  more than 30 R Near the  dawn side of the  

t a i l  the  plasma sheet has a thickness of  - 10R and the  f i e l d  

perpendicular t o  the  neut ra l  sheet i s  1 - 4 y. 
t h i s  region w i l l  have a length of between about 20 RE and 75 R 

E' 
5 2 The f i e l d  strength across the  neut ra l  

E' 

E 

The plasma t a i l  i n  

E' 

4. OTHER PHENOMENA 

The introduction of energetic pa r t i c l e s  t o  form an 

asymmetrical radiat ion zone shown i n  Fig. 3 must lead  t o  three 

other e f fec ts :  

(a) 

(b) 

The development of a symmetrical radiat ion b e l t  

The development of a new ionospheric current system 

and 

( c )  New pat terns  of auroral precipi ta t ion.  

4.1 The Origin of the  Radiation Belt 

Following reconnection of magnetic f i e l d  l i n e s  i n  t h e  ta i l ,  

these l i n e s  and t h e i r  share of plasma from the  t a i l  plasma sheet 

move in to  the  corotating magnetosphere as shown by t h e  paths i n  Fig.lb. 
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P a r t i c l e s  which penetrate  more deeply experience more betatron 

accelerat ion and as seen above some may a t t a i n  energies of a few 

hundred keV. This plasma i s  dis t r ibuted i n i t i a l l y  around the  night 

s ide  of t h e  auroral  oval or tail boundary shown i n  Fig. 2. 

More energetic p a r t i c l e s  now develop a new d r i f t  due t o  

the  magnetic f i e l d  gradient, and for energies 20 keV t h i s  dr i f t  

exceeds the  general convection of the cold plasma. These p a r t i c l e s  

move approximately along pa ra l l e l s  of l a t i t u d e  and because of t h e i r  

spread i n  veloci ty  and other factors they develop i n t o  a complete 

ring. I n  Fig. 5b are  shown the  two main zones of auroral  p rec ip i ta t ion  

[Piddington, 19653 which Were i so la ted  not only on t h e  bas i s  of a 

s p a t i a l  separation but a l so  because of t he  d i f fe ren t  proper t ies  of 

the  p rec ip i t a t ed  pa r t i c l e s .  Zone I1 i s  the auroral  oval, where 

l a rge  fluxes of so f t e r  (E 2 10 keV) electrons a r e  prec ip i ta ted .  

Zone I i s  the  high-lat i tude portion of a rad ia t ion  zone formed i n  

the  above manner by the  harder (E 20 keV) protons and electrons.  

P a r t i c l e s  are prec ip i ta ted  from t h i s  zone, the major l o s s  being i n  

the  morning sector.  

on t h e  equatorward s ide  of Zone I have the  same o r ig in  but suf fe r  

fewer losses.  

Pa r t i c l e s  i n  the semi-permanent rad ia t ion  zone 

The growth of t h i s  radiation b e l t ,  as revealed by the  main 

phase decrease of a geomagnetic storm (Ds t ) ,  i s  shown as the  lower 

curve of Fig. 6. A t  time t = 0 the magnetosphere i s  being i n f l a t e d  
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by flow inwards from the  t a i l  which continues u n t i l  a substorm or 

bay s tar ts  and releases  some plasmaback in to  t h e  ta i l .  During the  

bay t h e  outer p a r t  of t he  radiation zone i s  l o s t  and there  i s  a la rge  

decrease i n  the  high-lati tude boundary of trapped electrons of 

E > 45 keV ( the electrons so l o s t  replenish t h e  t a i l  plasma sheet) .  

This e f f ec t  i s  i l l u s t r a t e d  by the  middle curve of Fig. 6; t he  upper 

(hatched) p a r t  of t he  f igure isdescribed i n  section 4.3. 

The temporary lo s s  of plasma i n  t h e  rear of t h e  magnetosphere 

will explain the  f a i l u r e  by Akasofu [1967] t o  detect  the storm b e l t  

i n  t h i s  region. 

4.2 The Origin of Negative Bays 

The c l a s s i ca l  stormtime equivalent ionospheric current 

system [see ,  f o r  example, Obayashi, 19661 has four current ce l l s .  

I n  addi t ion t o  two c e l l s  which somewhat resemble those of Fig. la, 

there  a re  two lower l a t i t u d e  ce l l s ,  an anticlockwise c e l l  centred 

i n  the  ear ly  morning and a clockwise c e l l  opposite. 

seem t o  compress the  DP2 c e l l s  (Fig. l a )  i n t o  t h e  polar  cap and t o  

c rea te  e l ec t ro j e t s  along the auroral oval, westward i n  t h e  ear ly  

morning sector and eastward i n  the  afternoon sector. 

the  l a t t e r  i s  weak or absent and the main fea ture  is a westward j e t  

extending at l e a s t  from dawn t o  midnight. 

or substorm current system, which gives r ise  t o  the  common negative 

bay. 

These c e l l s  

Sometimes 

This i s  the  DP1 system 
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An explanation of t h e  four-cel l  current system has been 

given i n  terms of an asymmetrical ring current i n  the  night o r  

late evening sector [Fejer,  1961; Curmnings, 1966 and others] .  

Objections t o  t h i s  model me,  f i r s t  t h a t  it does not take account 

of t h e  very la rge  (; 1000) and local ized changes i n  the  night-time 

conductivity of t he  ionosphere caused by auroral  p rec ip i ta t ion  and, 

second, t h a t  a model of the r e a l  ionospheric current system i s  

compared with an equivalent ionospheric current derived from sea-level 

magnetic perturbations. 

The model now proposed comprises the  two high-lat i tude 

H a l l  current c e l l s  similar to-those of Fig. la, together w i t h  two 

low-latitude H a l l  current c e l l s  driven by the  polarized asymmetrical 

rad ia t ion  b e l t .  I n  each c e l l  Pedersen current a l so  flows, but i t s  

sea-level magnetic e f fec t ,  when combined with tha t  due t o  current 

flowing up and down f i e l d  l ines ,  i s  s m a l l .  

p a t t e rn  from these two sources i s  ju s t  the  reverse of the  d r i f t  

pa t t e rn  V 

diagram t o  show i t s  general form. 

The complete current 

+ Vs of Fig. 3 and so we do not require  an addi t ional  
P 

The e l e c t r i c  f i e l d  of equation (4), fo r  an asymmetric radia- 
-8 - 

emu when pro- 4 t i o n  zone of energy 10 

jec ted  in to  the  ionosphere. 

given above we f ind  J - 10 

erg cm 3, has a value - 5 x 10 

Combined with the  value of conductivity 

-4 emu per cm s t r i p  and the  resu l t ing  
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sea-level magnetic perturbation i s  only about 100 y. 

order of magnitude l e s s  than the observed perturbations,  i n  s p i t e  

of t he  f a c t  t ha t  the e l e c t r i c  f i e l d  gives outstanding values of 

d r i f t  veloci ty  both i n  the  magnetosphere and i n  the  ionosphere. 

This i s  an 

The amount of auroral  precipi ta t ion required t o  provide 

-2 a weak arc  provides more than electrons ern sec - l  and will 

increase the  ionospheric conductivity by several  powers of 10. 

This will cause an increase i n  the  ionospheric current,  although 

not i n  the  same proportion because o f  the  l i m i t  s e t  by the  

conductivity away from t h e  auroral  arc. 

concentration of current i n to  t h e  narrow, highly conducting 

auroral  arc. 

The main e f f ec t  w i l l  be a 

Lack of precipi ta t ion near dusk w i l l  r e s u l t  i n  a 

s ingle  westward arc i n  the  early morning sector.  

4.3 Auroral Arcs and Substorms 

The two major features  of d i scre te  v isua l  auroras a r e  t he  

homogeneous a rc  and the auroral  substorm [Akasofu, 19661. The 

former has a ribbon-like structure,  extending several  thousand 

kilometres along the  auroral  ovstl, ye t  having a width of only a few 

hundred metres. There may be several a rcs  i n  existance at one time, 

separated by about 0.3 degrees of l a t i t u d e  and providing a stable 

pa t t e rn  which may endure for an 

auroral  substorm the  luminosity i n  t h e  midnight sector spreads from 

hour  or more. A t  the  onset of an 
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t h e  arc at lowest l a t i t u d e  towards t h e  pole. 

t h e  hatched area representing the  north-south extent of the 

i l lumination p lo t ted  against  time. This a c t i v i t y  i s  confined 

i n i t i a l l y  t o  the midnight sector,  but soon the  poleward bulge 

propagates eastward and westward along the  pre-existing arcs.  

Auroral p rec ip i ta t ion  has been explained i n  terms of 

This i s  shown i n  Fig. 6, 

accelerated magnetic reconnection i n  the  tai l  and t h e  "dumping" 

of plasma moving i n  from the  t a i l  [Piddington, 1967al. This i s  

t h e  most l i k e l y  or igin of t h e  lower energy (E 2 10 keV) p a r t i c l e s  

responsible f o r  rapidly f luctuat ing auroral  forms and associated 

with negative bays of abrupt o r  rapid onset. 

The prec ip i ta t ion  of higher energy ( E 7 20 keV) electrons 

appears t o  be a d i f fe ren t ,  although related,  phenomenon [ Piddington, 

19653. 

were observed by O'Brien [19641 and we ident i fy  these with at  

l e a s t  some quiet  arcs.  Observed a t  a l e v e l  of about 1000 km, t h e  

s t r ik ing  feature  about t h i s  precipi ta t ion event w a s  t h a t  t he  f lux  

of prec ip i ta t ing  electrons increased u n t i l  it equalled but  never 

exceeded the  f lux  of trapped past ic les .  

Such pa r t i c l e s  and the  aurora l  i l lumination caused by them 

This phenomenon and the  substorm may be explained i n  

terms of the  plasma from the  asymmetrical radiat ion b e l t  d r i f t i n g  

under the  influence of t he  e l ec t r i c  space charge f i e l d  Em. This 



26 

dr i f t  i s  outwards towards the  tail in  t h e  night  sector  as shown 

i n  Fig. 3. 

from t h e  dawn t o  the  dusk s ide and somewhere between t h e  inner 

boundazy and the  corotating magnetosphere there  m a y  be a region 

of zero magnetic f ie ld .  Plasma pa r t i c l e s  entering t h i s  region 

are no longer trapped, t he  f i r s t  invariant i s  no longer conserved 

and t h e  veloci ty  d is t r ibu t ion  becomes i so t ropic  and remains so 

i n  s p i t e  of prec ip i ta t ion  losses.  

region i n  the ionosphere i s  not determined by t h e  dimensions of 

t he  region of zero f i e ld ,  but rather by the  change i n  geomagnetic 

l a t i t u d e  across the  region where trapping i s  l o s t .  

value of t h i s  dimension i s  determined by t h e  gyro diameter of the  

electrons.  Projected in to  t h e  ionosphere t h i s  i s  only a few tens 

of metres. Thus the  model explains the  isotropy of the  electrons 

above the  ionosphere and the  narrowness of the  auroral  arc.  

The current forming the t a i l  neut ra l  sheet flows 

The width of t h e  prec ip i ta t ion  

The minimum 

Outward d r i f t  of t h e  plasma across the  f i e l d  l i n e s  provides 

8 continuous source of e lectrons f o r  precipi ta t ion.  When the  f i e l d  

E becomes la rge  the  dr i f t  increases and a wide band i n  the  ionosphere 

i s  connected t o  a region where t h e  p a r t i c l e  f lux  i s  isotropic .  

i s  t h e  auroral  substorm of Fig. 6 and i s  accompanied by a marked 

drop i n  t h e  l a t i t u d e  of t he  outer boundasy of trapped electrons as 

shown by the  middle curve. As shown i n  Fig. 3 t h e  outward drift  Vs 

changes in to  a westwad d r i f t  i n  the dusk zone and i n t o  an eastward 

m 

This 
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d r i f t  i n  t he  early morning zone. 

s tage of t he  substorm. 

This corresponds t o  the  breakup 

Final ly  we consider t h e  simultaneous formation of two 

or more arcs.  

or more regions of weak magnetic f ie ld ,  corresponding t o  a s e r i e s  

of hydromagnetic compression waves near t he  boundary of t he  

corotating magnetosphere. 

These are interpreted as prec ip i ta t ion  from two 
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CAPTIONS 

FIGURE 1 The 'hormal "equivalent ionospheric current system and t h e  

corresponding drift  motions. 

(a) 
i s  shown by the  arrows j. 

convection or interchange motion i s  shown by the  arrows V 

The t a i l  section i s  outlined by dashes. 

(b) 

pa t te rn  V 

shown but not dr i f t  i n  the ta i l .  V i s  a temporary reverse 

d r i f t  which diss ipates  the midnight sector  of the storm 

radiat ion be l t .  

The current system DP2 [ a f t e r  Nagata and Kokubun, 19621 
If t h i s  i s  H a l l  current then the  

q' 

A projection in to  the equator ia l  plane of the  convection 

Dr i f t  within t h e  corotating magnetosphere i s  
q' 

S 

FIGURE 2 A project ion i n  the  northern ionosphere of some phenomena 

which may delineate the  magnetotail boundary. 

i s  fo r  average conditions and t races  Feldstein 's  auroraL 

The f u l l  l i n e  

hydromagnetic disturbances. The expanded storm-time oval 

i s  shown by w a v y  l ines .  

FIGURE 3 A n  ionospheric projection showing the  auroral  oval and the  

modified d r i f t  V through the  t a i l .  An asymmetrical r i ng  

current or  radiat ion zone i s  shown (hatched) and some 

possible  developments comprising e l e c t r i c  space charge and 

H a l l  d r i f t  V 

P 

caused by the new e l e c t r i c  f i e l d  system. 
S 

FIGURE 4 A schematic diagram of t h a t  p a r t  of the magnetotail lying 

within - 20 R and containing the  plasma sheet (semi-thick- 

ness 2 - 6 RE) and magnetic "neutral" sheet. The radiat ion 

zone i s  shown i n  cross section, and a l so  the  inward (F1) 

and outward ( F ~ )  plasma flow. 

E 
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FIGURE 5 (a) 
corresponding s low disappearance and abrupt reappearance 

of t a i l  electrons (E > 45 keV) at 17 RE ( a f t e r  Hones e t  al., 

1967) 
(b)  A schematic representation of the  two pr inc ipa l  
auroral  zones. Z o r ~  I1 is  the  auroral  oval defined by the  

occurrence of d i scre te  visual auroras (shown under average 

conditions of disturbance). 

and i s  also the  outer past of t h e  storm-time radiat ion 

zone which extends down t o  l a t i t u d e s  < 50". 

the  polar cap where various prec ip i ta t ion  events occur. 

A p lo t  of a geomagnetic negative bay ( X )  and t h e  

Zone I i s  fo r  mantle auroras 

Zone I11 i s  

FIGURE 6 A schematic diagram o f  a pa i r  of auroral  substorms p lo t t ed  

i n  Universal Time and Invariant Latitude A; these substorms 

occur while t h e  aurorail oval i s  expanding. Also shown i s  the  

outer l i m i t  of the  trapping boundary of electrons E > 45 keV 
- * .  . I .  - ,. 
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